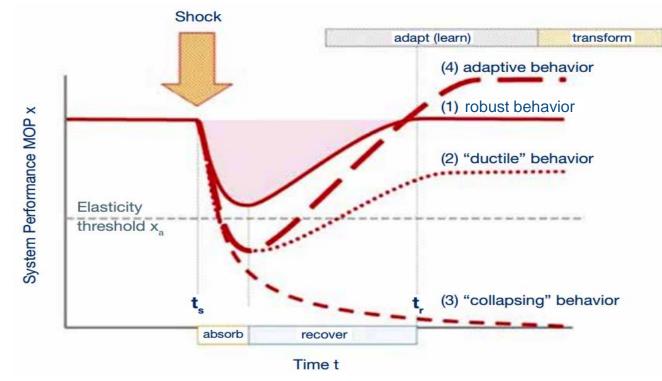
ETH zürich

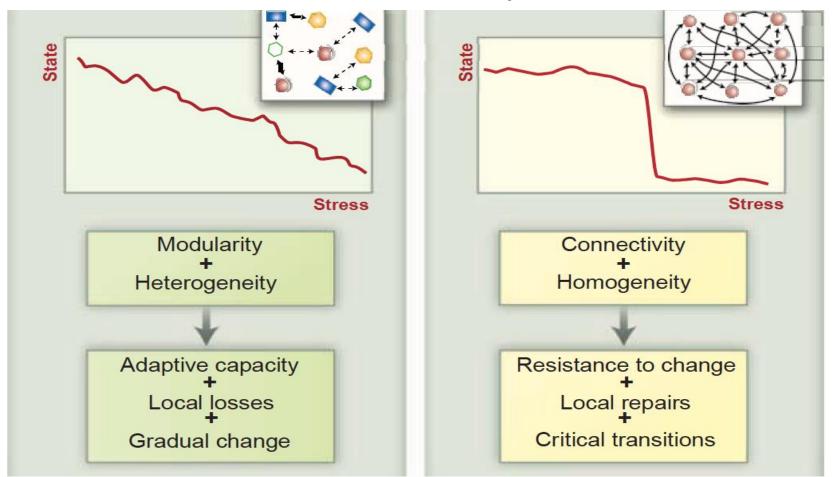
Wie wird die digitale Stromversorgung resilienter? Reflexion der präsentierten Ergebnisse Dr.-Ing. Wolfgang Kröger, Prof. ETH Zurich Former Executive Director ETH Risk Center


Berlin, 10. November 2017

Reflexion – auf den Punkt gebracht

- Glückwunsch zu dem Fortschritt und Geschaffenen
- Weitgehende Übereinstimmung mit der Angemessenheit des methodischen Ansatzes und den ausgewiesenen Ergebnissen einschliesslich des "vulnerability ratings"
- Dennoch ein paar "kritische" Anmerkungen zu: Begriffliche Unschärfen Qualitativer Ansatz / Stand Analysetechnik Bedeutung des Gestaltungselements "Granularität" "Mankos"/Anregungen

From Pure System "hardening" to Post-Shock "soft landing" Resilience Strategy – extentended definition und illustration


Ability of a system to resist/absorb the adverse effects of a disruptive force (either sudden or creeping) with decreasing performance but without collapsing, and the abilitity and speed to recover and return to an appropriate functionality – by adapting through self-organization and learning and eventually bouncing back or transforming into a different state [Kröger, 2017]

Patterns of resilient response behaviors (Courtesy: Heinimann, 2014)

ETH zürich

What do we learn from analytical tools?

The connectivity and homogeneity of the units affect the way in which distributed systems with local alternative states respond to changing conditions ("stress") [Streffer et al., Science, 2012]

"Mankos" und Anregungen

- Put more emphasis on potential "new" (common cause) failure modes within commonly used commercial soft- and hardware and on "manipulation" as cyber attack mode.
- Consider German transmission grid as part of the highlymeshed ENTSO-E grid, governed by the "Operation Handbook", and address more clearly potential effects of fragmented control on grid stability.
- Strive to ensure impact factors by use of quantitative analyses/simulations and contribute to the future development of suitable methods and frameworks.

ETH zürich

Additional slides

Defining Key Terms Related to Critical Infrastructure

- <u>Critical infrastructure</u>: Assets that are essential for the functioning of a society and economy /Vatn, Hokstad, Utne, '12/
- <u>Risk</u>: Traditionally, property of a system being analysed comprising the probability whether undesired events (*event scenarios*) will occur or not and the consequences indicating their severity /Vatn, Hokstad, Utne, '12/
- <u>Reliability</u>: Probability that an electric power grid (*technical system*) can perform a required function under given conditions for a given time interval /IEC/
- Vulnerability: Drop in performance when a disruptive event emerges /Ouyang, Kun, '14/
- Resilience: Ability of a system (or system-of-systems) to react and recover from unanticipated disturbances and events /Hollnagel et al., '06/...to resist/absorb initial adverse effects of a disruptive (shocking or creeping) internal or external event/force (stressor) and the time/speed at which it is able to return to an appropriate functionality/equilibrium /Kröger, '14; FRS team work in progress/
- <u>Complexity</u>: Inherent characteristic of a system endorsed by tight coupling and interdependencies completed with emergent behavior and self-organization /wikipedia/

Paradigm Shift from Pure Prevention to Resilience: Some Suggested Guiding Principles

- Seize resource buffers, functional and physical redundancy/diversity
- Ensure robust topology against internal and (areal) external events, stochastic or targeted (balance interconnectedness, identify critical nodes, avoid super spreaders), physcially protect critical components and bottlenecks
- Balance complexity (avoid too little too high) as well as automation and human control (automation for high reliability, humans-in-loop for unforeseen)
- Prevent them from spreading failures and sudden changes, optimize structure (degree, connectivity, hybrid solutions) against random failures and malicious attacks
- Ensure operation within safety margins, perform decoupling (islanding) strategies
- Span hazards and threats and associated scenarios to all imaginable, strive for "predictability" by applying new knowledge and advance modelling techniques